Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
J Clin Med ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38541922

RESUMO

(1) Background: Non-stenotic complicated plaques are a neglected cause of stroke, in particular in young patients. Atherosclerosis has some preferential sites in extracranial arteries and the prepetrous segment of the internal carotid artery has been rarely described as site of atheroma in general and of complicated atheroma in stroke patients. The aim of this study is to describe the rate of the prepetrous internal carotid artery's (ICA) involvement in a single-center case series of young stroke patients. (2) Methods: All patients < 50 years old with acute ischemic stroke admitted to a single-center Stroke Unit during two time periods (the first one from 1 January 2018 to 31 December 2019, and the second one from 1 January 2021 to 30 June 2022), were prospectively investigated as part of a screening protocol of the Searching for Explanations for Cryptogenic Stroke in the Young: Revealing the Etiology, Triggers, and Outcome (SECRETO) study [ClinicalTrials.gov ID NCT01934725], including extracranial vascular examination by using computed tomography (CT) or magnetic resonance imaging (MRI). (3) Results: Two out of ninety-three consecutive patients (2.15%) had a complicated atheroma in the prepetrous ICA as the cause of stroke and both CT angiography and high-resolution vessel wall MRI were applied to document the main features of positive remodeling, cap rupture, ulceration, intraplaque hemorrhage, and a transient thrombus superimposed on the atheroma. The two patients had a different evolution of healing in the first case and a persisting ulceration at 12 months in the second case. (4) Conclusions: The prepetrous ICA is a rarely described location of complicated atheroma in stroke patients at all ages and it represents roughly 2% of causes of acute stroke in this single-center case series in young people.

2.
Am J Prev Cardiol ; 18: 100645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38550634

RESUMO

Background: Studies reporting collective and comprehensive data on plaque regression of different lipid-lowering therapies (LLTs) are limited. Objectives: We evaluated plaque regression of LLTs based on multiple markers and performed subgroup analyses based on LLT type and post-treatment LDL-C levels. Methods: A literature search was performed to identify studies assessing plaque regression from LLTs. The following LLTs groups were included: High-intensity statin (HIS), HIS+ eicosapentaenoic acid (EPA), HIS + ezetimibe, Low-intensity statin (LIS), LIS + EPA, LIS + Ezetimibe, and PCSK9 inhibitors. Our primary outcomes were change in percent atheroma volume (PAV). Secondary outcomes included mean differences in total atheroma volume (TAV), lumen, plaque, and vessel volumes, fibrous cap thickness (FCT), and lipid arc (LA). Subgroup analyses were performed on LLT type and post-treatment LDL-C levels. Meta-regression was performed to control for covariates. Results: We identified 51 studies with 9,113 adults (22 % females). LLTs reduced PAV levels (-1.10 % [-1.63, -0.56], p < 0.01), with significant reduction observed with HIS, LIS + ezetimibe, LIS + EPA, and PCSK9 inhibitors. LLTs reduced TAV levels (-5.84 mm3 [-8.64 to -3.04] p < 0.01), mainly driven by HIS (-7.60 mm3 [-11.89, -3.31] p < 0.01). LLTs reduced plaque volume and LA and increased FCT. Conclusion: The plaque regression associated with LLTs is observed to be mainly driven by HIS, reducing both TAV and PAV. This suggest that HIS is the most effective LLT for plaque regression. Unstructured abstract: We evaluated plaque regression of LLTs from 51 studies. We found that while reduction of PAV (-1.10 % [-1.63, -0.56], p < 0.01) were present across different LLT types, reduction of TAV (-5.84 mm3 [-8.64 to -3.04] p < 0.01) was mainly driven by HIS (-7.60 mm3 [-11.89, -3.31] p < 0.01). These results suggest that HIS is the most effective LLT for plaque regression.

3.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337615

RESUMO

Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Aterosclerose/metabolismo , Dieta , S-Adenosilmetionina/metabolismo , Ácido Fólico/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Metaboloma , Homocisteína/metabolismo , Apolipoproteínas/metabolismo
4.
Genes (Basel) ; 15(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397203

RESUMO

Carotid intima-media thickness (CIMT) is a surrogate indicator for atherosclerosis and has been shown to predict cardiovascular risk in multiple large studies. Identification of molecular markers for carotid atheroma plaque formation can be critical for early intervention and prevention of atherosclerosis. This study performed transcription factor (TF) network analysis of global gene expression data focusing on two TF genes, ZNF385D and HAND2, whose polymorphisms have been recently reported to show association with CIMT. Genome-wide gene expression data were measured from pieces of carotid endarterectomy collected from 34 hypertensive patients (atheroma plaque of stages IV and above according to the Stary classification) each paired with one sample of distant macroscopically intact tissue (stages I and II). Transcriptional regulation networks or the regulons were reconstructed for ZNF385D (5644 target genes) and HAND2 (781 target genes) using network inference. Their association with the progression of carotid atheroma was examined using gene-set enrichment analysis with extremely high statistical significance for regulons of both ZNF385D and HAND2 (p < 6.95 × 10-7) suggesting the involvement of expression quantitative loci (eQTL). Functional annotation of the regulon genes found heavy involvement in the immune system's response to inflammation and infection in the development of atherosclerosis. Detailed examination of the regulation and correlation patterns suggests that activities of the two TF genes could have high clinical and interventional impacts on impairing carotid atheroma plaque formation and preventing carotid atherosclerosis.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Fatores de Transcrição/genética , Espessura Intima-Media Carotídea , Fatores de Risco , Doenças das Artérias Carótidas/genética , Regulação da Expressão Gênica
5.
J Nutr Biochem ; 126: 109562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176626

RESUMO

Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.


Assuntos
Aterosclerose , Cetose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaboloma
6.
J Lipid Res ; 65(3): 100507, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38272355

RESUMO

Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Masculino , Animais , Camundongos , Finasterida/farmacologia , Finasterida/uso terapêutico , Inquéritos Nutricionais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Receptores de LDL/genética , Camundongos Knockout
7.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38216380

RESUMO

BACKGROUND: Atherosclerosis is an inflammatory disease. Interleukin 18 (IL-18) is an inflammatory molecule that has been linked to the development of atherosclerosis and cardiovascular disease. OBJECTIVE: To evaluate the possible relationship between plasma levels of IL-18 and the presence of atherosclerosis evaluated at the carotid level, as well as to analyze the possible modulation by different polymorphisms in a Mediterranean population. MATERIAL AND METHODS: Seven hundred and forty-six individuals from the metropolitan area of Valencia were included, recruited over a period of 2 years. Hydrocarbon and lipid metabolism parameters were determined using standard methodology and IL-18 using ELISA. In addition, carotid ultrasound was performed and the genotype of four SNPs related to the IL-18 signaling pathway was analyzed. RESULTS: Patients with higher plasma levels of IL-18 had other associated cardiovascular risk factors. Elevated IL-18 levels were significantly associated with higher carotid IMT and the presence of atheromatous plaques. The genotype with the A allele of the SNP rs2287037 was associated with a higher prevalence of carotid atheromatous plaque. On the contrary, the genotype with the C allele of the SNP rs2293224 was associated with a lower prevalence of atheromatous plaque. CONCLUSIONS: High levels of IL-18 were significantly associated with a higher carotid IMT and the presence of atheromatous plaques, which appear to be influenced by genetic factors, as evidenced by associations between SNPs in the IL-18 receptor gene and the presence of atheroma plaque.

8.
Nutr Res Pract ; 17(6): 1099-1112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053825

RESUMO

BACKGROUND/OBJECTIVES: Dyslipidemia causes metabolic disorders such as atherosclerosis and fatty liver syndrome due to abnormally high blood lipids. Purple perilla frutescens extract (PPE) possesses various bioactive compounds such as α-asarone, chlorogenic acid and rosmarinic acid. This study examined whether PPE and α-asarone improved dyslipidemia-associated inflammation and inhibited atheroma formation in apolipoprotein E (apoE)-deficient mice, an experimental animal model of atherosclerosis. MATERIALS/METHODS: ApoE-deficient mice were fed on high cholesterol-diet (Paigen's diet) and orally administrated with 10-20 mg/kg PPE and α-asarone for 10 wk. RESULTS: The Paigen's diet reduced body weight gain in apoE-deficient mice, which was not restored by PPE or α-asarone. PPE or α-asarone improved the plasma lipid profiles in Paigen's diet-fed apoE-deficient mice, and despite a small increase in high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL)-cholesterol, and very LDL were significantly reduced. Paigen's diet-induced systemic inflammation was reduced in PPE or α-asarone-treated apoE-deficient mice. Supplying PPE or α-asarone to mice lacking apoE suppressed aorta atherogenesis induced by atherogenic diet. PPE or α-asarone diminished aorta accumulation of CD68- and/or F4/80-positive macrophages induced by atherogenic diet in apoE-deficient mice. Treatment of apoE-deficient mice with PPE and α-asarone resulted in a significant decrease in plasma cholesteryl ester transfer protein level and an increase in lecithin:cholesterol acyltransferase reduced by supply of Paigen's diet. Supplementation of PPE and α-asarone enhanced the transcription of hepatic apoA1 and SR-B1 reduced by Paigen's diet in apoE-deficient mice. CONCLUSIONS: α-Asarone in PPE inhibited inflammation-associated atheroma formation and promoted hepatic HDL-C trafficking in dyslipidemic mice.

9.
Adv Biomed Res ; 12: 226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073739

RESUMO

Background: The aim of this study was to determine the reliability of panoramic radiograph (PR) as a screening tool for the detection of calcified carotid atheroma (CCA) in comparison with Doppler ultrasonography (DU) examination. Materials and Methods: In this study, DU was performed for 52 patients who had carotid calcification or other differential diagnoses of carotid calcification on PR routine screening. The data relating to the presence or absence of calcified atheroma in DU and PR were evaluated using SPSS software. Results: In the 52 stated patients, CCA of 9 (18%) patients was diagnosed in the PR. Significant differences in CCA between the two sexes were not found. Also, considerable differences between the left and right sides (P = 0/906) were not found. Moreover, the positive cases who are diagnosed using ultrasonography and PR were 2.25% and 6.5%, respectively. Conclusion: PR method is not a good choice for the primary diagnosis method for the carotid artery calcifications due to its less positive diagnosing ratio compared to DU.

10.
J Clin Med ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068289

RESUMO

BACKGROUND: Carotid free-floating thrombus (CFFT) is an uncommon disorder. The aim of this study was to describe a French cohort of CFFT patients. METHODS: We conducted a retrospective monocentric study from a Stroke Center among patients admitted for stroke with CFFT. RESULTS: Between January 2017 to December 2019, 2038 ischemic strokes were recorded. A total of 50 patients with CFFT were consecutively included (32 men/18 women). The mean age was 58.2 years (±11.7). Their etiologies were atheroma (46%), carotid dissection and web (20%), hypercoagulability disorders (16%) and arrhythmia (10%). Exclusive medical management was performed in 38 patients (76%): 29 (59.2%) were anticoagulated and 9 (18.4%) received antiplatelets alone in the first week. Surgical intervention was performed in the first 30 days for 11 patients (22%). The main surgical indication was a residual carotid stenosis over 70%. Only three patients had a recurrent stroke in the medical group with anticoagulants. No patients in the antiplatelet group or the surgical group had a recurrent stroke. CONCLUSIONS: Our study summarized a large cohort of 50 patients with CFFT. This diagnosis implies the need to search for a local arterial disease and to screen for hypercoagulability states. An initial medical strategy followed by a delayed carotid surgery if the follow-up imaging shows a residual stenosis appears to be safe.

11.
Atheroscler Plus ; 54: 30-41, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116576

RESUMO

Background and aim: The complex dynamic interplay between different biological pathways involved in atherosclerosis development has rendered the identification of specific therapeutic targets a challenging quest. We aimed to identify specific genes and mechanistic pathways associated with the early development of fibro-atheromas in a swine model of atherosclerosis. Methods: The Wisconsin Miniature Swine™ model of Familial Hypercholesterolemia (WMS-FH, n = 11) and genetically related WMS controls (WMS-N, n = 11) were used. The infrarenal aorta was harvested from both groups for histopathologic and transcriptomic profiling at 12 months. Bioinformatic analysis was performed to identify hub genes and pathways central to disease pathophysiology. The expression of ITGB2, the top ranked hub gene, was manipulated in cell culture and the expression of interconnected genes was tested. Results: Fibro-atheromatous lesions were documented in all WMS-FH aortic tissues and displayed internal elastic lamina (IEL) disruption, significant reduction of myofibroblast presence and disorganized collagen deposition. No fibro-atheromas were observed in the control group. A total of 266 differentially expressed genes (DEGs) were upregulated in WMS-FH aortic tissues, while 29 genes were downregulated. Top identified hub genes included ITGB2, C1QA, LCP2, SPI1, CSF1R, C5AR1, CTSS, MPEG1, C1QC, and CSF2RB. Overexpression of ITGB2 resulted in elevated expression of other interconnected genes expressed in porcine endothelial cells. Conclusion: In a swine translational model of atherosclerosis, transcriptomic analysis identified ITGB2 as a central hub gene associated inflammation and early fibroatheroma development making it a potential therapeutic target at this stage of disease.

13.
Expert Opin Ther Targets ; 27(12): 1231-1245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38009300

RESUMO

INTRODUCTION: Lipid-laden foam cells within atherosclerotic plaques are key players in all phases of lesion development including its progression, necrotic core formation, fibrous cap thinning, and eventually plaque rupture. Manipulating foam cell biology is thus an attractive therapeutic strategy at early, middle, and even late stages of atherosclerosis. Traditional therapies have focused on prevention, especially lowering plasma lipid levels. Despite these interventions, atherosclerosis remains a major cause of cardiovascular disease, responsible for the largest numbers of death worldwide. AREAS COVERED: Foam cells within atherosclerotic plaques are comprised of macrophages, vascular smooth muscle cells, and other cell types which are exposed to high concentrations of lipoproteins accumulating within the subendothelial intimal layer. Macrophage-derived foam cells are particularly well studied and have provided important insights into lipid metabolism and atherogenesis. The contributions of foam cell-based processes are discussed with an emphasis on areas of therapeutic potential and directions for drug development. EXERT OPINION: As key players in atherosclerosis, foam cells are attractive targets for developing more specific, targeted therapies aimed at resolving atherosclerotic plaques. Recent advances in our understanding of lipid handling within these cells provide insights into how they might be manipulated and clinically translated to better treat atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Células Espumosas/metabolismo , Células Espumosas/patologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Aterosclerose/tratamento farmacológico , Macrófagos/metabolismo , Lipoproteínas
14.
Cardiovasc Pathol ; 67: 107572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37595697

RESUMO

Data from histopathology studies of human atherosclerotic tissue specimens and from vascular imaging studies support the concept that the local arterial microenvironment of a stable atheroma promotes destabilizing conditions that result in the transition to an unstable atheroma. Destabilization is characterized by several different plaque phenotypes that cause major clinical events such as acute coronary syndrome and cerebrovascular strokes. There are several rupture-associated phenotypes causing thrombotic vascular occlusion including simple fibrous cap rupture of an atheroma, fibrous cap rupture at site of previous rupture-and-repair of an atheroma, and nodular calcification with rupture. Endothelial erosion without rupture has more recently been shown to be a common phenotype to promote thrombosis as well. Microenvironment features that are linked to these phenotypes of plaque instability are neovascularization arising from the vasa vasorum network leading to necrotic core expansion, intraplaque hemorrhage, and cap rupture; activation of adventitial and perivascular adipose tissue cells leading to secretion of cytokines, growth factors, adipokines in the outer artery wall that destabilize plaque structure; and vascular smooth muscle cell phenotypic switching through transdifferentiation and stem/progenitor cell activation resulting in the promotion of inflammation, calcification, and secretion of extracellular matrix, altering fibrous cap structure, and necrotic core growth. As the technology evolves, studies using noninvasive vascular imaging will be able to investigate the transition of stable to unstable atheromas in real time. A limitation in the field, however, is that reliable and predictable experimental models of spontaneous plaque rupture and/or erosion are not currently available to study the cell and molecular mechanisms that regulate the conversion of the stable atheroma to an unstable plaque.

16.
Front Physiol ; 14: 1162436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089419

RESUMO

In this work an Artificial Neural Network (ANN) was developed to help in the diagnosis of plaque vulnerability by predicting the Young modulus of the core (E core ) and the plaque (E plaque ) of atherosclerotic coronary arteries. A representative in silico database was constructed to train the ANN using Finite Element simulations covering the ranges of mechanical properties present in the bibliography. A statistical analysis to pre-process the data and determine the most influential variables was performed to select the inputs of the ANN. The ANN was based on Multilayer Perceptron architecture and trained using the developed database, resulting in a Mean Squared Error (MSE) in the loss function under 10-7, enabling accurate predictions on the test dataset for E core and E plaque . Finally, the ANN was applied to estimate the mechanical properties of 10,000 realistic plaques, resulting in relative errors lower than 3%.

17.
Front Cardiovasc Med ; 10: 1152124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063951

RESUMO

Background and aims: Fatty streaks initiating the formation of atheromatous plaque appear in the tunica intima. The tunica media is not known to be a nidus for lipid accumulation initiating atherogenesis. We assessed changes to the tunica media in response to a micro-injury produced in the pig aorta. In addition, we assessed human carotid endarterectomy plaques for indication of atheroma initiation in the tunica media. Methods: Three healthy landrace female pigs underwent laparotomy to inject autologous blood and create micro-hematomas at 6 sites within the tunica media of the infrarenal abdominal aorta. These pigs were fed a high-fat diet (HFD) for 4-12 weeks. Post-mortem aortas from all pigs, including a control group of healthy pigs, were serially stained to detect lipid deposits, vasa vasora (VV), immune cell infiltration and inflammatory markers, as well as changes to the vascular smooth muscle cell (vSMC) compartment. Moreover, 25 human carotid endarterectomy (CEA) specimens were evaluated for their lipid composition in the tunica media and intima. Results: High lipid clusters, VV density, and immune cell infiltrates were consistently observed at 5 out of 6 injection sites under prolonged hyperlipidemia. The hyperlipidemic diet also affected the vSMC compartment in the tunica media adjacent to the tunica adventitia, which correlated with VV invasion and immune cell infiltration. Analysis of human carotid specimens post-CEA indicated that 32% of patients had significantly greater atheroma in the tunica media than in the arterial intima. Conclusion: The arterial intima is not the only site for atherosclerosis initiation. We show that injury to the media can trigger atherogenesis.

18.
Atherosclerosis ; 373: 58-65, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36872186

RESUMO

BACKGROUND AND AIMS: Hemodynamic and plaque characteristics can be analyzed using coronary CT angiography (CTA). We aimed to explore long-term prognostic implications of hemodynamic and plaque characteristics using coronary CT angiography (CTA). METHODS: Invasive fractional flow reserve (FFR) and CTA-derived FFR (FFRCT) were undertaken for 136 lesions in 78 vessels and followed-up to 10 years until December 2020. FFRCT, wall shear stress (WSS), change in FFRCT across the lesion (ΔFFRCT), total plaque volume (TPV), percent atheroma volume (PAV), and low-attenuation plaque volume (LAPV) for target lesions [L] and vessels [V] were obtained by independent core laboratories. Their collective influence was evaluated for the clinical endpoints of target vessel failure (TVF) and target lesion failure (TLF). RESULTS: During a median follow-up of 10.1 years, PAV[V] (per 10% increase, HR 2.32 [95% CI 1.11-4.86], p = 0.025), and FFRCT[V] (per 0.1 increase, HR 0.56 [95% CI 0.37-0.84], p = 0.006) were independent predictors of TVF for the per-vessel analysis, and WSS[L] (per 100 dyne/cm2 increase, HR 1.43 [1.09-1.88], p = 0.010), LAPV[L] (per 10 mm3 increase, HR 3.81 [1.16-12.5], p = 0.028), and ΔFFRCT[L] (per 0.1 increase, HR 1.39 [1.02-1.90], p = 0.040) were independent predictors of TLF for the per-lesion analysis after adjustment for clinical and lesion characteristics. The addition of both plaque and hemodynamic predictors improved the predictability for 10-year TVF and TLF of clinical and lesion characteristics (all p < 0.05). CONCLUSIONS: Vessel- and lesion-level hemodynamic characteristics, and vessel-level plaque quantity, and lesion-level plaque compositional characteristics assessed by CTA offer independent and additive long-term prognostic value.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/patologia , Angiografia por Tomografia Computadorizada , Prognóstico , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Valor Preditivo dos Testes , Angiografia Coronária , Tomografia Computadorizada por Raios X , Hemodinâmica , Estenose Coronária/patologia
19.
Diagnostics (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36766583

RESUMO

The article describes how atherosclerosis and coronavirus disease 19 (COVID-19) may affect each other. The features of this comorbid pathogenesis at various levels (vascular, cellular and molecular) are considered. A bidirectional influence of these conditions is described: the presence of cardiovascular diseases affects different individuals' susceptibility to viral infection. In turn, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can have a negative effect on the endothelium and cardiomyocytes, causing blood clotting, secretion of pro-inflammatory cytokines, and thus exacerbating the development of atherosclerosis. In addition to the established entry into cells via angiotensin-converting enzyme 2 (ACE2), other mechanisms of SARS-CoV-2 entry are currently under investigation, for example, through CD147. Pathogenesis of comorbidity can be determined by the influence of the virus on various links which are meaningful for atherogenesis: generation of oxidized forms of low-density lipoproteins (LDL), launch of a cytokine storm, damage to the endothelial glycocalyx, and mitochondrial injury. The transformation of a stable plaque into an unstable one plays an important role in the pathogenesis of atherosclerosis complications and can be triggered by COVID-19. The impact of SARS-CoV-2 on large vessels such as the aorta is more complex than previously thought considering its impact on vasa vasorum. Current information on the mutual influence of the medicines used in the treatment of atherosclerosis and acute COVID-19 is briefly summarized.

20.
Cardiovasc Res ; 119(1): 155-166, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35238350

RESUMO

AIMS: Atherosclerosis is a chronic inflammatory disease of the arteries leading to the formation of atheromatous plaques. Human mesenchymal stem cells (hMSCs) are recruited from the circulation into plaques where in response to their environment they adopt a phenotype with immunomodulatory properties. However, the mechanisms underlying hMSC function in these processes are unclear. Recently, we described that miRNA let-7f controls hMSC invasion guided by inflammatory cytokines and chemokines. Here, we investigated the role of let-7f in hMSC tropism to human atheromas and the effects of the plaque microenvironment on cell fate and release of soluble factors. METHODS AND RESULTS: Incubation of hMSCs with LL-37, an antimicrobial peptide abundantly found in plaques, increased biosynthesis of let-7f and N-formyl peptide receptor 2 (FPR2), enabling chemotactic invasion of the cells towards LL-37, as determined by qRT-PCR, flow cytometry, and cell invasion assay analysis. In an Apoe-/- mouse model of atherosclerosis, circulating hMSCs preferentially adhered to athero-prone endothelium. This property was facilitated by elevated levels of let-7f in the hMSCs, as assayed by ex vivo artery perfusion and two-photon laser scanning microscopy. Exposure of hMSCs to homogenized human atheromatous plaque material considerably induced the production of various cytokines, chemokines, matrix metalloproteinases, and tissue inhibitors of metalloproteinases, as studied by PCR array and western blot analysis. Moreover, exposure to human plaque extracts elicited differentiation of hMSCs into cells of the myogenic lineage, suggesting a potentially plaque-stabilizing effect. CONCLUSIONS: Our findings indicate that let-7f promotes hMSC tropism towards atheromas through the LL-37/FPR2 axis and demonstrate that hMSCs upon contact with human plaque environment develop a potentially athero-protective signature impacting the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Células-Tronco Mesenquimais , MicroRNAs , Placa Aterosclerótica , Camundongos , Animais , Humanos , MicroRNAs/genética , Aterosclerose/genética , Citocinas , Fatores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...